‘NONISOTHERMAL FLOW OF A NON-NEWTONIAN
FLUID IN THE SLOWLY CONVERGING

CHANNEL OF A BELT WORM-CONVEYOR

PUMP UNDER CONDITIONS OF COMPLEX SHEAR
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The flow of ‘an anomalously viscous fluid with an exponential rheological equation in the con-~
verging channel of the screw of a belt worm-conveyor pump is examined taking into accountthe
circulatory flow of the fluid, the dissipation of mechanical energy, and the exchange of heat with
the environment.

The subject of [1] is the isothermal flow of a non-Newtonian fluid with an exponential rheological equation
in the convergent channel of a worm-conveyor pump taking into account the complex shear nature of the flow.
The problem of determining the pressure gradient in any channel cross section is shown to be reducible to a
set of four transcendental equations. Insofar as the isothermal mode of the flow is purely hypothetical, since
mechanical energy dissipation always occurs in the screw channel, it is interesting to examine a similar prob-
lem in a nonisothermal formulation.

Let us examine the laminar transient nonisothermal flow of a non-Newtonian fluid in the slowly converg-
ing channel of a belt worm-conveyor pump, represented by a coil of trapezoidal cross section, rotating with
small clearances relative to the fixed outer cylinder and the inner truncated cone (Fig. 1a).

In the examination of this problem it is assumed that there are no clearances between the ridges of the
screw and the housing and that the initial depth of the channel H is less than its width S and much less than the
radius of the screw. The plane model of the screw channel is, therefore, used (Fig. 1b) and, for greater clar-
ity, the motion is reversed, The x axis is aligned along the channel, the y axis along its width, and the z axis
along the depth of the channel. The lower plate is inclined at an angle § to the x axis and moves at a velocity
Vi, while the upper plate is parallel with the x axis and moves at a velocity V,;. Pressure gradients 9p/8x=A,
and 9p/ 8y =A, move along the x and y axes. The slope of the plates in the direction of the y axis and the com-
ponent of fluid velocity in the direction of the z axis will be neglected,

The velocity Vp will be taken to imply the velocity at the mean radius of the truncated cone. In addition,
it will be assumed that the heat transfer between the product and the ambient proceeds in accordance with New-
ton's law with a coefficient of heat transfer « ,and the product temperature due to intensive mixing varies only
along the channel, remaining constant in the two other directions. It is also assumed that the specific heat of
the product C varies linearly with a rise in temperature C=C,+QT and that its viscosity varies in accordance
with the Reynolds law B=B;/exp(kT).

With a certain product flow rate Q; there may be a cross section hy=h; in which A;=0 in the channel. In
the H=hy=h, channel cross section, therefore, A; =0 and in the h=h, =h; crosssection, A; =0 (h is the finite
channel depth)., The pressure gradient A, is always positive, since the flow rate in the direction of the y axis
is equal to zero.
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Fig. 1. Diagram of belt worm-conveyor pump with converging
channel (a) and plane model of it (b).
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Fig. 2. Distribution of pressure p (N/ m?) along the length of channel for different
flow rate values Q (m3/sec): 1) Q;=1-10"% 2) 1.5-107% 3) 21074 4) 2,5 - 1074,

Fig. 3. Distribution of dimensionless temperature along length of screw channel

for different flow rate values Q; (m%/sec): 1) Q;=0.5-107% 2)1-10743) 1.5-107%;
4) 2:107%5) 2,5-107% b) T(=130°C; @ =500 J/m?- sec - deg; a) T=130°C; @ =1000;
¢) Ty=—10°C, & =500.

The inclined plane is replaced by a series of small steps dx long and parallel to the axis, and it is as-
sumed that the product flow within the limits of each such step proceeds in the same way as between the paral-
lel planes.,

The generalized exponential law [2, 3], in which the constants By, k, and n are independent of the product

temperature, is used as the rheological equation:
n—1

=i Ca) (5] @
The equations of motion in projections on the x and y axes take the form
07,102 == A,, 07,,/02 = A,, 2)
and their solution will be
Ty = Az — Ay, Ty = Az — Aghycy. &)}

The following dimensionless magnitudes are introduced in solving this problem:

E=zlh, 0, =WV, =WV, o= A/As
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ay= AylA, e=WV IV, E=h H, & =~h/H, b=hiH, 4)

T =T) _ (Ts—T1) %
8= n —k 90————n ko= Vuthi
It+n
[ Ajexp (T ‘,lz_ hy" _ Q
ﬁ'[ B, ] Ve T T

The combined solution of Eqs. (1) and (2), taking into account the dimensionless magnitudes of (4), the
adhesion conditions, and the conditions imposed on the product flow rates q; and q,, is written in the form [4]

4
v =Bexpb [ Gla,L—c)dl +ecos g, (5)
1]
v, = Pexp0 fG(azg —c;)dz +esing, ()
4]
1
ﬁexpejG(alg_cl)dg—(l—e)cosq;=o, 0
0

1
Bexp6 5' Glaf —c)di— (1 —e)sing =0,
8

1

Bexp0 [ G@t—c)(1—ydg+ecosp—g, =0,

i
1

ﬁexpej‘G(agg—cz)(l—g)dg—l— esing = 0.
0

In Egs. (5)-(7)
I--n
G =L — ) + (@ —c)’) .
Passing on to an examination of the heat transfer equation, it can be represented as follows for a screw
with i entries:
hx

h.\:
iS(C, +9T)p _Z_T»— j W_dz - iS 5 (1:
- 4] 0

ow ow
E. —_¥ )\ dz— iSa (T —T)). 8
e az)z T—T) (8)

By integrating theright and left sides of Eq. (8), taking into account the dimensionless variables (4), we
find

do -
(1 - A8) _l:i‘é_ =—=n[ele, Lo 0 G)— 1] E—ub—w. ©)

iISAVLH?E iSaH Qn iSaHk . .
= ;op= —— ;o A= —— v= ————(T; = T) are dimensionless complexes;
CinpQ,n tand CinpQytand kCin CinoQynitand
Cin=Cy +QTj is the heat capacity of the product at the channel input; €(cy, ¢y, @4, ay) = (@;—cycos ¢ +
(ay—cy)sin ¢ — e(cicos® + Cysing),

Here » —=

In the absence of heat transfer with the ambient o = =p =0, but if the heat capacity of the product is
virtually independent of temperature, then @ =A =0, C;=Cj, =C. Under these conditions Eq. (9) is simplified
considerably.

Thus, the system of equations Egs. (7) and (9) must be solved in order to determine c;, ¢y, @4, a5, and 6
in a random channel cross section.

The pressure gradient and worm-conveyor pump input power are defined as
1 b

AH
Ap = Powt™ P = 4, g‘aldx = t_zihi)ﬁ— j'aldg, (10)
b1 i
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iSAV, H?
ISAVH? j ey € @, ay) EdE. (11)

1

!

N=iS j' (Tyelomty, L;'l €OS @ — Tpylo0 Vz COSQ + Ty by VSN —T,,0 V) sin @) dx=— tand

0

In order to determine the longitudinal pressure gradient at the channel inlet A it must be assumed that
0 =0and a=1 in the system of equations (7) and then the system of equations must be solved for a given- Q, in
terms of B, ¢;, ¢y and a,. In order to determine the £ — £ cross section in which A;=0 the system equations
(7) and (9) must be solved when ¢ ;=0 in terms of ¢y, ¢y, a3, 0, and 8. By determining 8 and ¢ ; we find

: . 1
oL [_Bwp 1
°T H | Ajexp (RT})

If £y =<b (hy<h), then in the whole 1=§=b cross section, A;=0 (g;=0). If {;=Db, then in the 1 = £ =, cross
section, A; =0 (a;=0), and in the {3 =¢{ =b cross section, Ay =<0 (a; =0).

When e=0 (Vj =0) an equation is obtained for a normal worm-conveyor pump with a slowly converging
channel,

The following parameter values are selected for specific calculations: H=0.005m, h=0.002 m, ¢ =12°,
$=0.097 m, i=1,L=0.3 m ({ = L/sing =1.42 m), e=0.9, V,=1 m/sec, n=0.5, B; =270 N:see’/ m?, B=200
N -sec/m?, T;=20°C, k=0.015 1/deg, p =970 kg/m?, Ci,=1800 J-kg/deg, 2=8.4 J -kg/deg?, and p;, =0.

The problem is solved numerically on a computer. The calculation results are given in Figs. 2-4.

In Fig. 2 the solid lines represent the distribution of pressure along the length of the channel for different
values of the product flow rate Q, in the case of an adiabatic flow and a product heat capacity independent of
temperature (@ =02=A=0, C;=Cjn=C). R is clear from the figure that the nature of the curves can be different
depending on the product flow rate. I the section with a zero longitudinal pressure gradient is located beyond
the limits of the channel £ ;<0.4 (curves 1 and 2), then the pressure rises continuously from the channel input
(¢ =1) to its output (¢ =0.4), I £,=0.4 (curves 3 and 4), then the pressure rises at first to a certain magnitude
and then falls. The peak on the curves corresponds to the £ =§ cross section in which A,;=0.

In the same figure, for purposes of comparison, the dotted lines represent the distribution of pressure
along the channel in an isothermal mode of flow. It is clear from the figure that the nature of the curves for
isothermal and adiabatic modes of flow (for given flow rates) is maintained and the difference in pressure in-
creases as the product flow rate is reduced. It should be noted that, with the tolerances made in solving the
problem for a given product flow rate Q, and channel geometry, the positioning of the cross section with zero
longitudinal pressure gradient is dependent only on the anomaly in viscosity n and the lead angle of the helical
line ¢ and is independent of whether the process is isothermal or nonisothermal,

In Fig. 3 the solid lines represent the distribution of dimensionless product temperatures ® along the
length of the channel for different flow rate values when o =Q =A=0 and when the heat capacity of the product
is independent of temperature. As is to be expected, the product heating increases as @, is reduced and the
lower the flow rate, the faster the increase., Curves 2a, b, and ¢ are plotted for different values of the coef-
ficient of heat transfer ¢ and different thermal boundary conditions.

It is clear from the figure that when T, > Tj (curves 2a and b) the product temperature rises in compari-
son with the adiabatic flow mode and the greater o, the faster the rise, When T < Tj (curve 2c¢) the product
heating is reduced in comparison with the adiabatic flow mode. In the first case heat flows into the product
from the environment and in the second case, in the reverse direction.

The dotted eurve 1 is plotted for the case in which the heat capacity of the product increases witha growth
in temperature, when, clearly, the product heating is higher. It follows from this that variations in the heat
capacity of the product from the temperature in the engineering calculations must not be neglected,

Figure 4 gives the dependences of the dimensionless temperature gradient, and input power on the product
flow rate in the adiabatic (solid line) and isothermal (dotted line) modes of flow., I is clear from the figure
that in the adiabatic flow mode the product heating increases with a reduction in flow rate tending toward e«
when Q;=0. The pressure gradient and worm-conveyor input power at first grow and then fall with a reduction
in the flow rate. This is because, with a low Q,, the product in the screw channel is heated strongly and its
viscosity falls leading to a reduction in the local pressure gradients and pump input power. In an isothermal
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Fig. 4. Dependence of dimension-
less temperature 0., pressure
gradient Ap (N/m?, and input
power N (N-m/sec) on product
flow rate Q; (m3/sec).

mode of flow the pressure and power grow continuously as the flow rate is reduced, reaching a limit value at
Q4=0. In the same figure the dashed-dot lines represent the 6, — Q, Ap—Q,, and N—Q, characteristics for anormal
worm-conveyor pump (I =0). The nature of the curves is the same as for a belt worm-conveyor pump but the
flow rate and pressure gradient for this kind of worm-conveyor are much lower than for the belt-type. I fol-
lows from the above that the belt worm-conveyor pump is preferable.

NOTATION

X, vy, z, Cartesian coordinates; H, hg, h, initial, current, and final depth of screw channel; L, screw
length; 7xz, Tyzs Stress tensor components; 7, S, length and width of screw channel, ¢, lead angle of helical
line; Ay, Ay, pressure gradients; ¢y, ¢y, integration constants; T;, T, Ty, initial, current, and final product
temperatures; Tj, ambient temperature; 6, dimensionless temperature; pj,, Poyt, Product pressures at channel
input and output; v,, vy, dimensionless velocities; @y, Q,, true product flow rates along and across channel; q,
43, dimensionless product flow rates; i, number of entries in screw; C, heat capacity of product; p, density;
o, coefficient of heat transfer; N, power; ¢, £, dimensionless coordinates; X, u, v, A, 8, dimensionless com-
plexes; 7, stress tensor deviator; Wy, Wy, fluid particle velocity projections on x and y axes; A, strain ve-
locity tensor.
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