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The flow of 'an anomalously viscous fluid with an exponential theological  equation in the con- 
verging channel of the screw of a belt worm-conveyor  pump is examined taking into aceotmtthe 
c i rcu la to ry  flow of the fluid, the dissipation of mechanical  energy,  and the exchange of heat with 
the environment.  

The subject of [I] is the isothermal flow of a non-Newtonian fluid with an exponential rheological equation 
in the convergent channel of a worm-conveyor pump taking into account the complex shear nature of the flow. 
The problem of determining the pressure gradient in any channel cross section is shown to be reducible to a 
set of four transeendenta/equations. Insofar as the isothermal mode of the flow is purely hypothetical, since 
mechanical  energy dissipation always occurs  in the screw channel, it is interest ing to examine a s imi lar  prob-  
lem in a nonisothermal  formulation. 

Let us examine the laminar  t ransient  nonisothermal  flow of a non-Newtonian fluid in the slowly converg-  
ing channel of a belt worm-conveyor  pump, r ep resen ted  by a coil of t rapezoidal  c ro s s  section,  rotat ing with 
small  c learances  re la t ive  to the fixed outer cylinder and the inner t runcated cone (Fig. la). 

In the examination of this problem it is assumed that there  are  no c learances  between the r idges  of the 
screw and the housing and that the initial depth of the channel H is less than its width S and much less than the 
radius of the screw. The plane model of the screw channel is, therefore ,  used (Fig. lb) and, for grea ter  c l a r -  
ity, the motion is r eversed .  The x axis is aligned along the channel, the y axis along its width, and the z axis 
along the depth of the channel. The lower plate is inclined at an angle 6 to the x axis and moves at a velocity 
V l , while the upper plate is paral lel  with the x axis and moves at a velocity V u. P r e s s u r e  gradients 8 p / 0 x = A  i 
and 0 p / ~ y = A  2 move along the x and y axes. The slope of the plates in the direction of the y axis and the com-  
ponent of fluid velocity in the direction of the z axis will be neglected. 

The velocity ~ will be taken to imply the velocity at the mean radius  of the t runcated cone. In addition, 
it will be assumed that the heat t r ans fe r  between the product and the ambient proceeds in accordance  with New- 
ion 's  law with a coefficient of heat t r ans fe r  a ,and[he product t empera tu re  due to intensive mixing var ies  only 
along the channel,  remaining constant in the two other directions.  It is also assumed that the specific heat of 
the product C var ies  l inear ly  with a r i s e  in t empera tu re  C =C O +~2T and that its v iscosi ty  var ies  in accordance  
with the Reynolds law B =Bt/exp(kT) .  

With a cer ta in  product flow ra te  Qt there  may be a c ross  section hx=h  0 in which A t =0 in the channel. In 
the H _>b x _ h  0 channel c ro s s  section,  therefore ,  A t > 0 and in the h-< hx-<h 0 c ross  section, A i _<0 (h is the finite 
channel depth). The p re s su re  gradient A s is always positive, since the flow ra te  in the direction of the y axis 
is equal to zero.  
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Fig. 1. Diagram of belt  worm-conveyor  pump with converging 
channel (a) and plane model of it (b). 
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Fig. 2. Distribution of p r e s s u r e  p ( N / m  2) along the length of channel for different  
flow r a t e  values Q1 ( m3/sec ) :  1) QI=I  �9 10-4; 2) 1.5.10-4;  3) 2 �9 10-4; 4) 2.5 �9 10 -4 . 

Fig. 3. Distribution of dimensionless  t empera tu re  along length of sc rew channel 
for  different  flow r a t e  values Q1 ( m3/sec) :  1) Q1=0.5- 10-4; 2) 1-10-4;  3) 1.5- 10-4; 
4) 2 ,10-4 ;5)  2 .5 .10 -4 ;b )  T0=1 3 0 ~  J / m  2 . s e c . d e g ;  a) T0=130~ =1000; 
c) T0=-10~  a =500. 

The inclined plane is rep laced  by a s e r i e s  of small  steps dx long and para l le l  to the axis,  and it is as -  
sumed that the product flow within the l imits  of each such  step proceeds  in the same way as between the para l -  
lel  planes. 

The genera l ized  exponential  law [2, 3], in which the constants B1, k, and n a r e  independent of theproduc t  
t empera tu re ,  is used as the rheological  equation: 

n--I  

u B1 
exp (kT)  . [ (  O W ~ 2  ( OWy = O~-z' ,!  ~' ~ Oz )2] -T~" (1) 

The equations of motion in project ions on the x and y axes take the fo rm 

& r J O z  = Ai,  O'cw/Oz = A~, 

and thei r  solution will b e  

:x~z = A i z - - A o h ~ c l ,  "cy~ = A ~ z -  Aoh~c2. 

The following dimensionless  magnitudes a re  introduced in solving this problem: 

(2) 

(3) 

= z/h~, v i = W=/V u , v~ -~ W~IV u,  a i = Ai/Ao, 
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a,=-AJA o, e = V  z/V u, ~ = h J H ,  ~o=ho/H, b=h/H,  

0 =  ( T - - T i )  k, 0 c =  ( T f - - T i )  k, q~-- Q~ , 
n n V u h~ Si 

I q-n 
1 

p = [ Ao exp (kT~ ) ] - z- h x ~  q.,_ = Q2 
B 1 V u ' Vu hxli 

(4) 

The c o m b i n e d  so lu t i on  of Eqs .  (1) and  (2), t a k i n g  into accoun t  the  d i m e n s i o n l e s s  m a g n i t u d e s  of (4), the  
a d h e s i o n  c o n d i t i o n s ,  and  the  cond i t i ons  i m p o s e d  on the  p r o d u c t  f low r a t e s  ql  and  q2, is  w r i t t e n  in t he  f o r m  [4] 

v~ = 13 exp 0 j" G (a~ ~ - -  cl) d~ + e cos r (5) 
0 

v~ = 15 exp 0 .[ 6 (a2; - -  c2) d~ -t- e sin % (6) 
0 

l 

15 exp 0 5 G (al~ --c1) d~ - -  (1 - -  e) cos q~ = 0, (7) 
0 

l 

15 exp 0 S G(a2~ - -  c2) d ~ - -  (1 - -  e) sin qo --  0, 
0 

l 

15exp 0 .f (7 (al~ - -  Q) (i - -  ~) d~ q- ecos ,:p - -  ql = O, 
o 

1 

15 exp 0 S G (as; - -  c~) (1 - -  ~) d~ 4- e sin q~ = O. 
o 

In Eqs. (5)- (7) 

1--n 

6 [ ( a 1 r  cl) = -4- 2 ~ ,7  = % ; - - c = )  l - 

P a s s i n g  on to an e x a m i n a t i o n  of the  hea t  t r a n s f e r  equa t ion ,  i t  can  be  r e p r e s e n t e d  a s  fo l lows  for  a s c r e w  
wi th  i e n t r i e s :  

f ind 

h37 h x 

iS(C o +OT) p~d-x- W~dz:=iS %~ Oz -~ ry~ Oz ] 
o 0 

By i n t e g r a t i n g  t h e r i g h t  and  le f t  s i d e s  of  Eq. (8), t a k i n g  into accoun t  the  d i m e n s i o n l e s s  v a r i a b l e s  (4), we 

dO 
(1-F ~vO)- - = - - z  [e(q, % al, a2)--aNt ] ~- - , t tO- -v .  

a {  

(s) 

iSAoVu H2te iSaH 
H e r e  •  ; r t - -  - - ;  ~ . . . . .  

C i n p Q l n  t an6  C in  p Q l t a n 6  

.O.n iSaHk 
kCin ; v~: (T i - TO) a r e  d i m e n s i o n l e s s  c o m p l e x e s ;  

CinoQlntan6 

C i n = C o  +f~Ti  is  t he  hea t  c a p a c i t y  of t he  p r o d u c t  a t  the  channe l  input;  e ( c l ,  c2, a l ,  a2) = ( a l - % ) c o s  go + 
(a 2 - c 2 ) s i u  qo - e ( c l c o s  ~ + c2sinq)). 

In the  a b s e n c e  of  hea t  t r a n s f e r  wi th  the  a m b i e n t  ~ = p  = ~ = 0, but  if  the  hea t  c a p a c i t y  of  the  p r o d u c t  is  
v i r t u a l I y  independen t  of  t e m p e r a t u r e ,  then  s  =0 ,  C o = C i n  =C.  Under  t h e s e  c ond i t i ons  Eq. (9) is  s i m p l i f i e d  
c o n s i d e r a b l y .  

(9} 

Thus ,  the  s y s t e m  of  equa t ions  Eqs .  (7) and  (9} m u s t  be  s o l v e d  in o r d e r  to  d e t e r m i n e  Cl, e2, a l ,  a2 ,  and 0 
in a r a n d o m  channe l  c r o s s  s e c t i o n .  

The  p r e s s u r e  g r a d i e n t  and  w o r m - c o n v e y o r  p u m p  input  p o w e r  a r e  de f ined  a s  
l b 

Ap : P o u t -  Pin:': A~ [ aldx = tan -A~ ~ ald~' (10) 
g 1 
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l b 

N=iS  ~ (,~,,~hV u '  . cos q)-- ~[~=o V z .  costp + *y,,~=hV u sin (p--,w!,=o VZ sin tp) dx . . . .  !SA~ " ~ s(cl' c,, a i, a2)~d~. (11) 

0 1 

In o rde r  to de te rmine  the longitudinal p r e s s u r e  gradient  at the channel inlet A 0 it must  be a s sumed  that  
0 =0 and al=l  in the s y s t e m  of equations (7) and then the s y s t e m  of equations mus t  be  solved for a g i v e n  Q1 in 
t e r m s  of fl, c 1, c 2 and a 2. In o rde r  to de te rmine  the t - t 0 c r o s s  sec t ion  in which A I = 0  the s y s t e m  equations 
(7) and (9) mus t  be solved when ai=O in t e r m s  of c i, c2, a2, 0, and ft. By de termining  fl and ~ owe find 

1 ,[ ]++ 
go = ~ -  A o exp (k~) 

If t0 _<b (1i 0 _<h), then in the whole 1 _> t_>b c r o s s  sec t ion ,  A 1 _> 0 (a 1 -> 0). If t0-> b, then in the 1 __ t -> ~0 c r o s s  
sect ion,  AI_>0 (al_>0) , and in the ~0_>} _>b c r o s s  sect ion,  AI<_0 (a 1 -<0). 

When e = 0 (V/= 0) an equation is obtained for  a no rma l  w o r m - c o n v e y o r  pump with a slowly converging 
channel.  

The following p a r a m e t e r  va lues  a r e  se lec ted  for specif ic  calculat ions:  H=0.005 m,  h=0.002 m,  ~ =12 ~ 
S=0.097 m,  i=1 ,  L = 0 . 3  m (l = L / s i n g  =1.49 in), e=0 . 9 ,  V u = I  m / s e c ,  n=0 . 5 ,  B1=270 N . s e c n / m 2 ,  B=200 
N �9 secn /m 2, Ti=20~ k=0.015 1/deg,  p =970 k g / m  3, Cin=1800 J . k g / d e g ,  ~2 =8.4 J - k g / d e g  2, and Pin= 0. 

The p rob l em is solved numer i ca l l y  on a computer .  The Calculation r e s u l t s  a r e  given in Figs.  2-4. 

In Fig. 2 the solid lines r e p r e s e n t  the dis tr ibut ion of p r e s s u r e  along the length of the channel for different  
values  of the product  flow r a t e  Q1 in the ca se  of an adiabat ic  flow and a product  heat  capaci ty  independent of 
t e m p e r a t u r e  (~ =12=)t=O, C0=Cin=C) .  ]i is c l ea r  f r o m  the f igure that  the na ture  of the cu rves  can be different 
depending on the product  flow ra te .  If the sect ion with a ze ro  longitudinal p r e s s u r e  gradient  is located beyond 
the l imi t s  of the channel t 0 _<0.4 (curves 1 and 2), then the p r e s s u r e  r i s e s  continuously f r o m  the channel input 
(t =1) to its output (~ =0.4). If t 0->0.4 (curves 3 and 4), then the p r e s s u r e  r i s e s  at f i r s t  to a ce r ta in  magnitude 
and then fal ls .  The peak on the curves  co r r e sponds  to the ~ =t0 c r o s s  sect ion in which AI=0 .  

In the s a m e  f igure ,  for  purposes  of compar i son ,  the dotted l ines r e p r e s e n t  the dis tr ibut ion of p r e s s u r e  
along the channel in an i so the rma l  mode of flow. It is c l ea r  f r o m  the f igure  that  the na ture  of the curves  for 
i so the rma l  and adiabat ic  modes  of flow (for given flow ra te s )  i s  mainta ined and the d i f ference  in p r e s s u r e  in-  
c r e a s e s  as  the product  flow r a t e  is reduced.  It should be noted that ,  with the to l e rances  made in solving the 
p rob lem for a given product  flow r a t e  Q1 and channel geome t ry ,  the posit ioning of the c r o s s  sec t ion  with ze ro  
longitudinal p r e s s u r e  gradient  is dependent only on the anomaly  in v i scos i ty  n and the lead angle of the hel ical  
line r and is independent of  whether  the p roce s s  is i so the rmal  or  noniso thermal .  

In Fig. 3 the solid l ines r e p r e s e n t  the dis tr ibut ion of d imens ionless  product  t e m p e r a t u r e s  | along the 
length of the channel for different  flow r a t e  values  when ~ =12 =~ = 0 and when the heat capaci ty  of the product  
is independent of t e m p e r a t u r e .  As is to be  expected,  the product  heating inc reases  as  Q1 is reduced  and the 
lower the flow r a t e ,  the f a s t e r  the inc rease .  Curves  2a, b ,  and c a r e  plotted for different values  of the coef-  
f icient of heat  t r a n s f e r  ~ and different  t h e r m a l  boundary conditions. 

It is c l ea r  f r o m  the f igure  that  when T O > Ti (curves 2a and b) the p roduc t  t e m p e r a t u r e  r i s e s  in c o m p a r i -  
son with the adiabat ic  flow mode and the g r e a t e r  ~ ,  the f a s t e r  the r i s e .  When T < T i (curve 2c) the product  
heating is r educed  in compar i son  with the adiabat ic  flow mode. In the f i r s t  case  heat  flows into the product  
f r o m  the envi ronment  and in the second case ,  in the r e v e r s e  direct ion.  

The dotted curve  1 is plotted for the case  in which the heat  capaci ty  of the product  i nc rea se s  w i t h a g r o w t h  
in t e m p e r a t u r e ,  when, c l ea r ly ,  the product  heating is higher .  It follows f r o m  this  that var ia t ions  in the heat  
capac i ty  of the product  f r o m  the t e m p e r a t u r e  in the engineer ing calculat ions mus t  not be neglected.  

F igure  4 gives the dependences of the d imens ionless  t e m p e r a t u r e  gradient ,  and input power on the product  
flow r a t e  in the adiabat ic  (solid line) and i so the rma l  (dotted line) modes  of flow. It is c l ea r  f r o m  the f igure  
that in the adiabat ic  flow mode the product  heat ing i nc rea se s  with a reduct ion in flow r a t e  tending toward r 
when Q1 = 0. The p r e s s u r e  gradient  and w o r m - c o n v e y o r  input power at f i r s t  grow and then fall  with a reduct ion 
in the flow ra t e .  This  is because ,  with a low Qt, the product  in the s c r ew  channel  is heated  s t rongly  and its 
v i scos i ty  fal ls  leading to a reduct ion  in the local  p r e s s u r e  grad ien ts  and pump input power.  In an i so the rma l  
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Fig. 4. Dependence of dimension- 
less temperature e c, pressure 
gradient  Ap (N/mS), and input 
power N (N- m / s e c )  on product  
flow r a t e  Q1 (m3/sec) �9 

mode of flow the p r e s s u r e  and power grow continuously as the flow ra t e  is reduced,  reaching a l imit  value at 
Q1 =0. In the same f igure the dashed-dot lines r e p r e s e n t  the 0 c - Q 1 ,  &P-QI,  and N - Q  t cha rac t e r i s t i c s  for  a n o r m a l  
worm-conveyor  pump (l =0). The nature  of the curves  is the same as for a belt  worm-conveyor  pump but the 
flow ra t e  and p r e s s u r e  gradient  for this kind of worm-conveyor  axe much lower than for the bel t - type.  It fol-  
lows f rom the above that the belt  worm-conveyor  pump is p re fe rab le .  

NOTATION 

x, y, z, Car tes ian  coordinates ;  H, hx, h, initial ,  cu r r en t ,  and final depth of sc rew channel; L, screw 
length; Txz, Vyz, s t r e s s  tensor  components;  l ,  S, length mid width of sc rew channel,  q~, lead angle of helical  
line; A1, A2, p r e s s u r e  gradients;  el ,  e2, integration constants;  Ti, T, Tf, initial,, cu r ren t ,  mad final product 
t empera tu re s ;  To, ambient  t empera tu re ;  0,  dimensionless  t empera tu re ;  Pin, Pout, product p r e s su re s  at channel 
input and output; vl, v2, dimensionless  veloci t ies ;  Q1, Q2, t rue  product  flow r a t e s  along and ac ros s  channel; ql, 
q2, dimensionless  product  flow ra te s ;  i, number  of ent r ies  in screw;  C, heat capacity of product;  p ,  density; 
a ,  coefficient  of heat t r ans fe r ;  N, power; [ ,  ~, d imensionless  coordinates ;  ~, p ,  v,  ~, fl, dimensionless  com-  
plexes;  ~-, s t r e s s  tensor  deviator;  Wx, Wy, fluid par t i c le  veloci ty project ions  on x and y axes;  &, s t ra in  ve-  
loci ty tensor .  

1. 
2. 
3. 
4. 
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